<<EDA技术与创新实践>>

图书基本信息

书名: <<EDA技术与创新实践>>

13位ISBN编号: 9787111343714

10位ISBN编号:7111343719

出版时间:2012-1

出版时间:机械工业出版社

作者:高有堂 等主编

页数:351

版权说明:本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com

<<EDA技术与创新实践>>

内容概要

《EDA技术与创新实践》分为3部分。

第1部分是EDA技术的硬件资源篇,介绍了常用可编程逻辑器件的结构、性能指标。

第2部分是EDA技术的软件操作篇,主要内容包括Quartus

II 9.0软件工具的基本结构、主要功能以及工具的使用,

VHDL程序设计。

第3部分是EDA技术的创新设计应用篇,通过工程领域的应用实例使读者学习并掌握使用PLD器件解决 实际问题的方法。

作者根据多年的教学实践、对全国电子大赛征题与指导以及科研实践的体会,从实际应用的角度出发 ,以培养能力为目标,通过大量覆盖面广的实例,突出本书的实用性。

《EDA技术与创新实践》可作为大专院校的计算机类、电子类专业的教材,也可以作为广大电子设计工程师、ASIC设计人员和系统设计者的参考用书。

本书由南京理工大学博士后、南阳理工学院教授高有堂和南京理工大学博士、南阳理工学院徐源老师主编。

<<EDA技术与创新实践>>

书籍目录

序
前言
第1部分 硬件资源篇
第1章 电子设计自动化综述
1.1 EDA技术的发展
1.1.1 EDA技术的发展阶段
1.1.2 EDA技术的发展趋势
1.2 EDA技术的基本工具
1.2.1 EDA常用工具
1.2.2 设计输入编辑器
1.2.3 HDL综合器
1.2.4 仿真器
1.2.5 适配器(布局、布线器)
1.2.6 下载器
1.3 EDA的基本设计思路
1.3.1 EDA电路级设计
1.3.2 EDA系统级设计
1.4 PLD的设计流程
1.4.1 设计准备
1.4.2 设计输入
1.4.3 设计处理
1.4.4 设计检验
1.4.5 器件编程与配置
习题 第3章 Alters从司司始和逻辑器件
第2章 Altera公司可编程逻辑器件
2.1 Altera器件的命名
2.2 Altera常用器件
2.2.1 MAX 7000器件 2.2.2 FLEX 10K器件
2.2.2 FLEX 10K部件 习题
っ越 第2部分 软件操作篇
第2部分 秋叶绿15篇 第3章 Quartus 9.0软件
第3章 Quartus 9.0秋件 3.1 概述
3.2 Quartus 9.0软件的安装
3.2.1 系统配置要求
3.2.2 Quartus 9.0软件的安装过程
3.2.3 Quartus 9.0软件的授权
3.3 一般设计流程
3.3.1 图形用户界面设计流程
3.3.2 EDA工具设计流程
3.3.3 命令设计流程
3.3.4 Quartus 9.0软件的主要设计特征
3.4 Quartus 9.0软件的设计操作
3.4.1 设计输入
3.4.2 创建工程

<<EDA技术与创新实践>>

- 3.4.3 建立图形设计文件
- 3.4.4 建立文本编辑文件
- 3.4.5 建立存储器编辑文件
- 3.5 Quartus 9.0设计项目的编译
- 3.5.1 设计综合
- 3.5.2 编译器窗口
- 3.5.3 编译器选项设置
- 3.5.4 引脚分配
- 3.5.5 启动编译器
- 3.5.6 查看适配结果
- 3.6 Quartus 9.0设计项目的仿真验证
- 3.6.1 创建一个仿真波形文件
- 3.6.2 设计仿真
- 3.6.3 仿真结果分析
- 3.7 时序分析
- 3.7.1 时序分析基本参数
- 3.7.2 指定时序要求
- 3.7.3 完成时序分析
- 3.7.4 查看时序分析结果
- 3.8 器件编程
- 3.8.1 完成器件编程
- 3.8.2 编程器硬件驱动安装

习题

第4章 VHDL程序设计

- 4.1 VHDL语法基础
- 4.1.1 VHDL数据对象及其分类
- 4.1.2 VHDL数据类型
- 4.1.3 VHDL运算操作符
- 4.2 VHDL的基本结构
- 4.2.1 VHDL的基本结构及语法规则
- 4.2.2 VHDL构造体描述
- 4.2.3 进程(process)语句结构描述
- 4.2.4 子程序语句的结构描述
- 4.2.5 库、程序包及配置
- 4.3 VHDL顺序语句
- 4.3.1 赋值语句
- 4.3.2 if语句
- 4.3.3 case语句
- 4.3.4 loop语句
- 4.3.5 next语句
- 4.3.6 exit语句
- 4.3.7 wait语句
- 4.3.8 顺序语句中子程序调用语句
- 4.3.9 返回(return)语句
- 4.3.10 空操作(null)语句
- 4.4 VHDL并行语句
- 4.4.1 条件信号代入语句

<<EDA技术与创新实践>>

- 4.4.2 选择信号代入语句
- 4.4.3 元件例化语句
- 4.4.4 并行赋值语句(信号代入语句)
- 4.4.5 生成语句

习题

第3部分 创新设计应用篇

第5章 数字系统设计与实现

- 5.1 模为60的计数器设计与实现
- 5.1.1 建立图形文件
- 5.1.2 项目编译
- 5.1.3 项目仿真
- 5.2 时钟电路的设计与实现
- 5.2.1 文本编辑法设计模为24的计数电路
- 5.2.2 建立顶层clock文件与时钟电路设计
- 5.3 有限状态机电路设计与实现
- 5.3.1 有限状态机的编码规则
- 5.3.2 有限状态机的设计
- 5.3.3 有限状态机的VHDL程序设计
- 5.4 半整数分频器的设计
- 5.4.1 小数分频的基本原理
- 5.4.2 电路组成
- 5.4.3 半整数分频器的设计
- 5.5 UART数据接收发送电路设计与实现
- 5.5.1 波特率的设定
- 5.5.2 数据发送
- 5.5.3 数据接收
- 5.5.4 UART程序设计
- 5.6 CPLD在人机接口中的设计与实现
- 5.6.1 接口电路分析与设计
- 5.6.2 接口电路的部分软件设计
- 5.7 存储器模块电路设计与实现
- 5.7.1 硬件模块电路结构设计
- 5.7.2 模块电路软件设计与实现
- 5.8 运算器模块电路设计与实现
- 5.8.1 硬件模块电路结构设计
- 5.8.2 模块电路软件设计与实现
- 5.9 频率合成器模块设计与实现
- 5.9.1 硬件模块电路结构设计
- 5.9.2 模块电路软件设计与实现 习题

第6章 FPGA/CPLD器件的配置

- 6.1 ByteBlaster配置
- 6.1.1 原理与功能描述
- 6.1.2 PS模式
- 6.1.3 JTAG模式
- 6.1.4 软件编程和配置步骤
- 6.2 ByteBlasterMV并口下载电缆

<<EDA技术与创新实践>>

- 6.2.1 原理与功能描述
- 6.2.2 软件编程和配置步骤
- 6.3 MasterBlaster串行/USB通信电缆
- 6.3.1 特点
- 6.3.2 功能描述
- 6.3.3 PS模式
- 6.3.4 JTAG模式
- 6.4 BitBlaster串行下载电缆
- 6.4.1 特点
- 6.4.2 功能描述
- 6.5 MCU的快速配置
- 6.5.1 概述
- 6.5.2 硬件设计
- 6.5.3 软件设计

习题

第7章 综合设计与功能实现

- 7.1 信号调制通信系统设计
- 7.1.1 系统硬件电路分配与设计
- 7.1.2 系统软件描述与设计
- 7.1.3 系统仿真与调试
- 7.2 交通信号控制电路模块设计
- 7.2.1 硬件电路模块结构设计
- 7.2.2 模块电路软件设计与实现
- 7.3 系统功能下载/配置电路的焊接调试与功能实现
- 7.3.1 系统功能下载/配置电路的设计任务
- 7.3.2 系统功能下载/配置电路的焊接与调试

习题

第8章 实际工程项目设计——程控交换实验系统

- 8.1 总体设计
- 8.2 系统原理及组成
- 8.2.1 电路组成
- 8.2.2 控制系统
- 8.2.3 实际系统电路设计规划
- 8.3 硬件单元电路设计
- 8.3.1 系统用集成电话介绍
- 8.3.2 用户接口电路设计
- 8.3.3 外线及中继接口电路
- 8.3.4 振铃插入与振铃解脱电路
- 8.3.5 PCM编译码电路1
- 8.3.6 DTMF编译码电路
- 8.3.7 信号音及铃流产生电路
- 8.3.8 可编程开关阵列
- 8.3.9 键盘及显示电路
- 8.3.10 控制电路
- 8.4 软件设计
- 8.4.1 控制模块一软件设计
- 8.4.2 控制模块二软件设计

<<EDA技术与创新实践>>

- 8.5 系统实现
- 8.5.1 所需仪器仪表和软件
- 8.5.2 元件明细
- 8.5.3 软件和硬件调试

习题

第9章 电子设计竞赛指导

- 9.1 电子电路设计方案的选择
- 9.1.1 试题分析
- 9.1.2 方案选择
- 9.2 历届电子设计竞赛题分析
- 9.2.1 历届电子设计竞赛题目
- 9.2.2 竞赛题目归类
- 9.3 典型竞赛题目设计
- 9.3.1 模拟路灯控制系统(题,1999年竞赛试题)
- 9.3.2 系统整体方案的论证
- 9.3.3 系统分立模块设计及工作原理
- 9.3.4 软件设计
- 9.3.5 系统测试
- 9.4 竞赛论文撰写
- 9.4.1 设计报告的评分标准
- 9.4.2 设计报告的格式、内容及注意事项

习题

参考文献

<<EDA技术与创新实践>>

版权说明

本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com