出版時(shí)間:2012-8 出版社:電子工業(yè)出版社 作者:拉扎維 頁(yè)數(shù):916 字?jǐn)?shù):1947000
Tag標(biāo)簽:無
前言
導(dǎo)讀 RF Microelectronics一書的作者Behzad Razavi是美國(guó)加州大學(xué)洛杉磯分校終身教授,曾經(jīng)在美國(guó)貝爾實(shí)驗(yàn)室和惠普實(shí)驗(yàn)室從事多年的射頻電路設(shè)計(jì)工作,在射頻電路領(lǐng)域有數(shù)十年的科研和教學(xué)經(jīng)驗(yàn)。本書的第一版于1998年問世,經(jīng)過不斷的再版和翻譯,成為射頻電路設(shè)計(jì)領(lǐng)域的經(jīng)典書籍。14年來,射頻電路設(shè)計(jì)領(lǐng)域發(fā)生了巨大的變化,高集成度的無線設(shè)備和寬帶的無線應(yīng)用,促使科研人員在收發(fā)信機(jī)結(jié)構(gòu)、電路形式及器件特性上,不斷推陳出新。而且,新的電路分析方法及建模技術(shù)的成熟,使科研人員對(duì)射頻電路的理解步入一個(gè)新的臺(tái)階。為反映這些變化,本書的第二版得以問世。 與舊版相比,新版在篇章結(jié)構(gòu)與具體內(nèi)容上都有顯著變化,兩者的內(nèi)容重合度在10%左右。在新版著作中,作者通過大量的設(shè)計(jì)實(shí)例和問題討論,幫助讀者在學(xué)習(xí)射頻電路整體分析方法的同時(shí),了解射頻電路設(shè)計(jì)中可能遇到的細(xì)節(jié)問題。同時(shí),在新版著作中,作者也更加強(qiáng)調(diào)如何幫助讀者掌握射頻電路設(shè)計(jì)的基本方法,為此作者還特別增加了一章,用于指導(dǎo)讀者如何一步一步地設(shè)計(jì)晶體管級(jí)的雙頻段WiFi收發(fā)信機(jī)?! ”緯木唧w內(nèi)容可以概括如下。第2章介紹射頻電路設(shè)計(jì)中的基本概念,其中增加了雙端口網(wǎng)絡(luò)S參數(shù)的定義和計(jì)算實(shí)例,為本書后續(xù)章節(jié)的分析打下基礎(chǔ)。隨后,第3章對(duì)無線通信的基本概念進(jìn)行闡述,重點(diǎn)介紹數(shù)字調(diào)制方式及其相應(yīng)的電路實(shí)現(xiàn)實(shí)例。第4章不僅介紹傳統(tǒng)經(jīng)典結(jié)構(gòu)的各類收發(fā)信機(jī),同時(shí)基于作者對(duì)射頻電路最新發(fā)展趨勢(shì)的跟蹤,廣受關(guān)注的新型收發(fā)信機(jī)結(jié)構(gòu)也出現(xiàn)在新版著作中。值得一提的是,作者還通過問題討論等方式,結(jié)合802.11a/g等具體無線通信標(biāo)準(zhǔn),講解了設(shè)計(jì)中需要注意的實(shí)際問題。本書的第5章至第12章,詳盡介紹了無線收發(fā)信機(jī)中的各個(gè)子模塊。與舊版相比,各子模塊的分類方式有顯著改進(jìn),作者也濃墨重彩地分析了各類新型模塊技術(shù),使讀者能夠及時(shí)地掌握射頻電路設(shè)計(jì)的新趨勢(shì)。新版還加入了無源器件的介紹與分析,使內(nèi)容更趨完整。本書的第13章是收發(fā)信機(jī)設(shè)計(jì)實(shí)例,如前所述,本章內(nèi)容是全書知識(shí)點(diǎn)的靈活運(yùn)用,也是作者專注于設(shè)計(jì)方法傳授的點(diǎn)睛之筆?! ”緯膬?nèi)容體系基本涵蓋了國(guó)內(nèi)高?!巴ㄐ呕倦娐贰保ㄒ喾Q“高頻電子線路”)專業(yè)基礎(chǔ)課程的教學(xué)內(nèi)容。但是,通過本人在上海交通大學(xué)電子工程系本科三年級(jí)的親身教學(xué)實(shí)踐(1學(xué)期64學(xué)時(shí)),發(fā)現(xiàn)本書與“通信基本電路”課程的教學(xué)大綱存在一定的不匹配之處。本書的內(nèi)容相對(duì)于本科階段的知識(shí)體系顯得內(nèi)容過于龐大,系統(tǒng)級(jí)的電路分析定性講解有余,而單元電路的定量分析不足。因此,本書更適合作為理工類大專院校電子類專業(yè)研究生的課程教材。如果作為理工類大專院校通信、電子類本科生雙語教學(xué)和全英文教學(xué)的教材,建議結(jié)合Thomas H. Lee的Design of CMOS Radio-Frequency Integrated Circuits(由電子工業(yè)出版社翻譯出版),以便于學(xué)生掌握單元電路基礎(chǔ)知識(shí),為今后的科研打下扎實(shí)的基礎(chǔ)。本書內(nèi)容涵蓋無線收發(fā)信機(jī)各個(gè)模塊的介紹、分析和設(shè)計(jì),并融入了Razavi教授數(shù)十年的電路設(shè)計(jì)經(jīng)驗(yàn),對(duì)從事射頻電路設(shè)計(jì)的專業(yè)技術(shù)人員而言,更是一本不可多得的必備書籍?! 「市→L 副教授 上海交通大學(xué)電子工程系
內(nèi)容概要
本書側(cè)重系統(tǒng)級(jí)描述,綜合了無線通信電路系統(tǒng)描述、器件特性及單元電路分析,討論最新架構(gòu)、電路和器件。第1和第2章首先介紹射頻電子學(xué)基本概念和術(shù)語;第3章和第4章討論通信系統(tǒng)層的建模、檢測(cè)、多路存取等技術(shù)及無線標(biāo)準(zhǔn);第5章討論無線前端收發(fā)器的結(jié)構(gòu)和集成電路的實(shí)現(xiàn),第6章到第9章詳細(xì)討論了低噪聲放大器和混頻器、振蕩器、頻率綜合器和功放器電路原理和分析方法。
書籍目錄
CHAPTER 1 INTRODUCTION TO RF AND WIRELESS TECHNOLOGY
1.1 A Wireless World
1.2 RF Design Is Challenging
1.3 The Big Picture
References
CHAPTER 2 BASIC CONCEPTS IN RF DESIGN
2.1 General Considerations
2.1.1 Units in RF Design
2.1.2 Time Variance
2.1.3 Nonlinearity
2.2 Effects of Nonlinearity
2.2.1 Harmonic Distortion
2.2.2 Gain Compression
2.2.3 Cross Modulation
2.2.4 Intermodulation
2.2.5 Cascaded Nonlinear Stages
2.2.6 AM/PM Conversion
2.3 Noise
2.3.1 Noise as a Random Process
2.3.2 Noise Spectrum
2.3.3 Effect of Transfer Function on Noise
2.3.4 Device Noise
2.3.5 Representation of Noise in Circuits
2.4 Sensitivity and Dynamic Range
2.4.1 Sensitivity
2.4.2 Dynamic Range
2.5 Passive Impedance Transformation
2.5.1 Quality Factor
2.5.2 Series-to-Parallel Conversion
2.5.3 Basic Matching Networks
2.5.4 Loss in Matching Networks
2.6 Scattering Parameters
2.7 Analysis of Nonlinear Dynamic Systems
2.7.1 Basic Considerations
2.8 Volterra Series
2.8.1 Method of Nonlinear Currents
References
Problems
CHAPTER 3 COMMUNICATION CONCEPTS
3.1 General Considerations
3.2 Analog Modulation
3.2.1 Amplitude Modulation
3.2.2 Phase and Frequency Modulation
3.3 Digital Modulation
3.3.1 Intersymbol Interference
3.3.2 Signal Constellations
3.3.3 Quadrature Modulation
3.3.4 GMSK and GFSK Modulation
3.3.5 Quadrature Amplitude Modulation
3.3.6 Orthogonal Frequency Division Multiplexing
3.4 Spectral Regrowth
3.5 Mobile RF Communications
3.6 Multiple Access Techniques
3.6.1 Time and Frequency Division Duplexing
3.6.2 Frequency-Division Multiple Access
3.6.3 Time-Division Multiple Access
3.6.4 Code-Division Multiple Access
3.7 Wireless Standards
3.7.1 GSM
3.7.2 IS-95 CDMA
3.7.3 Wideband CDMA
3.7.4 Bluetooth
3.7.5 IEEE802.11a/b/g
3.8 Appendix I: Differential Phase Shift Keying
References
Problems
CHAPTER 4 TRANSCEIVER ARCHITECTURES
4.1 General Considerations
4.2 Receiver Architectures
4.2.1 Basic Heterodyne Receivers
4.2.2 Modern Heterodyne Receivers
4.2.3 Direct-Conversion Receivers
4.2.4 Image-Reject Receivers
4.2.5 Low-IF Receivers
4.3 Transmitter Architectures
4.3.1 General Considerations
4.3.2 Direct-Conversion Transmitters
4.3.3 Modern Direct-Conversion Transmitters
4.3.4 Heterodyne Transmitters
4.3.5 Other TX Architectures
4.4 OOK Transceivers
References
Problems
CHAPTER 5 LOW-NOISE AMPLIFIERS
5.1 General Considerations
5.2 Problem of Input Matching
5.3 LNA Topologies
5.3.1 Common-Source Stage with Inductive Load
5.3.2 Common-Source Stage with Resistive Feedback
5.3.3 Common-Gate Stage
5.3.4 Cascode CS Stage with Inductive Degeneration
5.3.5 Variants of Common-Gate LNA
5.3.6 Noise-Cancelling LNAs
5.3.7 Reactance-Cancelling LNAs
5.4 Gain Switching
5.5 Band Switching
5.6 High-IP2 LNAs
5.6.1 Differential LNAs
5.6.2 Other Methods of IP2 Improvement
5.7 Nonlinearity Calculations
5.7.1 Degenerated CS Stage
5.7.2 Undegenerated CS Stage
5.7.3 Differential and Quasi-Differential Pairs
5.7.4 Degenerated Differential Pair
References
Problems
CHAPTER 6 MIXERS
6.1 General Considerations
6.1.1 Performance Parameters
6.1.2 Mixer Noise Figures
6.1.3 Single-Balanced and Double-Balanced Mixers
6.2 Passive Downconversion Mixers
6.2.1 Gain
6.2.2 LO Self-Mixing
6.2.3 Noise
6.2.4 Input Impedance
6.2.5 Current-Driven Passive Mixers
6.3 Active Downconversion Mixers
6.3.1 Conversion Gain
6.3.2 Noise in Active Mixers
6.3.3 Linearity
6.4 Improved Mixer Topologies
6.4.1 Active Mixers with Current-Source Helpers
6.4.2 Active Mixers with Enhanced Transconductance
6.4.3 Active Mixers with High IP2
6.4.4 Active Mixers with Low Flicker Noise
6.5 Upconversion Mixers
6.5.1 Performance Requirements
6.5.2 Upconversion Mixer Topologies
References
Problems
CHAPTER 7 PASSIVE DEVICES
7.1 General Considerations
7.2 Inductors
7.2.1 Basic Structure
7.2.2 Inductor Geometries
7.2.3 Inductance Equations
7.2.4 Parasitic Capacitances
7.2.5 Loss Mechanisms
7.2.6 Inductor Modeling
7.2.7 Alternative Inductor Structures
7.3 Transformers
7.3.1 Transformer Structures
7.3.2 Effect of Coupling Capacitance
7.3.3 Transformer Modeling
7.4 Transmission Lines
7.4.1 T-Line Structures
7.5 Varactors
7.6 Constant Capacitors
7.6.1 MOS Capacitors
7.6.2 Metal-Plate Capacitors
References
Problems
CHAPTER 8 OSCILLATORS
8.1 Performance Parameters
8.2 Basic Principles
8.2.1 Feedback View of Oscillators
8.2.2 One-Port View of Oscillators
8.3 Cross-Coupled Oscillator
8.4 Three-Point Oscillators
8.5 Voltage-Controlled Oscillators
8.5.1 Tuning Range Limitations
8.5.2 Effect of Varactor Q
8.6 LC VCOs with Wide Tuning Range
8.6.1 VCOs with Continuous Tuning
8.6.2 Amplitude Variation with Frequency Tuning
8.6.3 Discrete Tuning
8.7 Phase Noise
8.7.1 Basic Concepts
8.7.2 Effect of Phase Noise
8.7.3 Analysis of Phase Noise: Approach I
8.7.4 Analysis of Phase Noise: Approach II
8.7.5 Noise of Bias Current Source
8.7.6 Figures of Merit of VCOs
8.8 Design Procedure
8.8.1 Low-Noise VCOs
8.9 LO Interface
8.10 Mathematical Model of VCOs
8.11 Quadrature Oscillators
8.11.1 Basic Concepts
8.11.2 Properties of Coupled Oscillators
8.11.3 Improved Quadrature Oscillators
8.12 Appendix I: Simulation of Quadrature Oscillators
References
Problems
CHAPTER 9 PHASE-LOCKED LOOPS
9.1 Basic Concepts
9.1.1 Phase Detector
9.2 Type-I PLLs
9.2.1 Alignment of a VCO’s Phase
9.2.2 Simple PLL
9.2.3 Analysis of Simple PLL
9.2.4 Loop Dynamics
9.2.5 Frequency Multiplication
9.2.6 Drawbacks of Simple PLL
9.3 Type-II PLLs
9.3.1 Phase/Frequency Detectors
9.3.2 Charge Pumps
9.3.3 Charge-Pump PLLs
9.3.4 Transient Response
9.3.5 Limitations of Continuous-Time Approximation
9.3.6 Frequency-Multiplying CPPLL
9.3.7 Higher-Order Loops
9.4 PFD/CP Nonidealities
9.4.1 Up and Down Skew and Width Mismatch
9.4.2 Voltage Compliance
9.4.3 Charge Injection and Clock Feedthrough
9.4.4 Random Mismatch between Up and Down Currents
9.4.5 Channel-Length Modulation
9.4.6 Circuit Techniques
9.5 Phase Noise in PLLs
9.5.1 VCO Phase Noise
9.5.2 Reference Phase Noise
9.6 Loop Bandwidth
9.7 Design Procedure
9.8 Appendix I: Phase Margin of Type-II PLLs
References
Problems
CHAPTER 10 INTEGER-N FREQUENCY SYNTHESIZERS
10.1 General Considerations
10.2 Basic Integer-N Synthesizer
10.3 Settling Behavior
10.4 Spur Reduction Techniques
10.5 PLL-Based Modulation
10.5.1 In-Loop Modulation
10.5.2 Modulation by Offset PLLs
10.6 Divider Design
10.6.1 Pulse Swallow Divider
10.6.2 Dual-Modulus Dividers
10.6.3 Choice of Prescaler Modulus
10.6.4 Divider Logic Styles
10.6.5 Miller Divider
10.6.6 Injection-Locked Dividers
10.6.7 Divider Delay and Phase Noise
References
Problems
CHAPTER 11 FRACTIONAL-N SYNTHESIZERS
11.1 Basic Concepts
11.2 Randomization and Noise Shaping
11.2.1 Modulus Randomization
11.2.2 Basic Noise Shaping
11.2.3 Higher-Order Noise Shaping
11.2.4 Problem of Out-of-Band Noise
11.2.5 Effect of Charge Pump Mismatch
11.3 Quantization Noise Reduction Techniques
11.3.1 DAC Feedforward
11.3.2 Fractional Divider
11.3.3 Reference Doubling
11.3.4 Multiphase Frequency Division
11.4 Appendix I: Spectrum of Quantization Noise
References
Problems
CHAPTER 12 POWER AMPLIFIERS
12.1 General Considerations
12.1.1 Effect of High Currents
12.1.2 Efficiency
12.1.3 Linearity
12.1.4 Single-Ended and Differential PAs
12.2 Classification of Power Amplifiers
12.2.1 Class A Power Amplifiers
12.2.2 Class B Power Amplifiers
12.2.3 Class C Power Amplifiers
12.3 High-Efficiency Power Amplifiers
12.3.1 Class A Stage with Harmonic Enhancement
12.3.2 Class E Stage
12.3.3 Class F Power Amplifiers
12.4 Cascode Output Stages
12.5 Large-Signal Impedance Matching
12.6 Basic Linearization Techniques
12.6.1 Feedforward
12.6.2 Cartesian Feedback
12.6.3 Predistortion
12.6.4 Envelope Feedback
12.7 Polar Modulation
12.7.1 Basic Idea
12.7.2 Polar Modulation Issues
12.7.3 Improved Polar Modulation
12.8 Outphasing
12.8.1 Basic Idea
12.8.2 Outphasing Issues
12.9 Doherty Power Amplifier
12.10 Design Examples
12.10.1 Cascode PA Examples
12.10.2 Positive-Feedback PAs
12.10.3 PAs with Power Combining
12.10.4 Polar Modulation PAs
12.10.5 Outphasing PA Example
References
Problems
CHAPTER 13 TRANSCEIVER DESIGN EXAMPLE
13.1 System-Level Considerations
13.1.1 Receiver
13.1.2 Transmitter
13.1.3 Frequency Synthesizer
13.1.4 Frequency Planning
13.2 Receiver Design
13.2.1 LNA Design
13.2.2 Mixer Design
13.2.3 AGC
13.3 TX Design
13.3.1 PA Design
13.3.2 Upconverter
13.4 Synthesizer Design
13.4.1 VCO Design
13.4.2 Divider Design
13.4.3 Loop Design
References
Problems
INDEX
章節(jié)摘錄
2.Bandwidth efficiency,i.e.,the bandwidth occupied by the modulated carrier for a given information rate in the baseband signal.This aspect plays a critical role in today's systems because the available spectrum is limited.For example,the GSM phone system provides a total bandwidth of 25 MHz for millions of users in crowded cities.The sharing of this bandwidth among so many users is explained in Section 3.6. 3.Power efficiency,i.e.,the type of power amplifier(PA)that can be used in the transmitter.As explained later in this chapter,some modulated waveforms can be processed by means of nonlinear power amplifiers,whereas some others require linear amplifiers.Since nonlinear PAs are generally more efficient(Chapter 12),it is desirable to employ a modulation scheme that lends itself to nonlinear amplification. The above three attributes typically trade with one another.For example,we may suspect that the modulation format in Fig.3.3(b)is more bandwidth-efficient than that in Fig.3.3(a)because it carries twice as much information for the same bandwidth.This advantage comes at the cost of detectability-because the amplitude values are more closely spaced-and power efficiency-because PA nonlinearity compresses the larger amplitudes. 3.2 ANALOG MODULATION If an analog signal,e.g.,that produced by a microphone,is impressed on a carrier,then we say we have performed analog modulation.While uncommon in today's high-performance communications,analog modulation provides fundamental concepts that prove essential in studying digital modulation as well. 3.2.1 Amplitude Modulation For a baseband signal xBB(t),an amplitude-modulated(AM)waveform can be constructed as xAM(t)= Ac(1+mxBB(t))cosωct,(3.2) where m is called the"modulation index."Illustrated in Fig.3.4(a)is a multiplication method for generating an AM signal.We say the baseband signal is"upconverted."The waveform Ac cosωct is generated by a"local oscillator"(LO).Multiplication by cosωct in the time domain simply translates the spectrum of xBB(t)to a center frequency of ωc(Fig.3.4(b)).Thus,the bandwidth of xAM(t)iS twice that of xBB(t).Note that since XBB(t)has a symmetric spectrum around zero(because it is a real signal),the spectrum of xAM(t)is also symmetric around ωc.This symmetry does not hold for all modulation schemes and plays a significant role in the design of transceiver architectures(Chapter 4). ……
圖書封面
圖書標(biāo)簽Tags
無
評(píng)論、評(píng)分、閱讀與下載