<<现代电气控制设备>>

图书基本信息

书名:<<现代电气控制设备>>

13位ISBN编号: 9787302290049

10位ISBN编号:7302290040

出版时间:2012-9

出版时间:清华大学出版社

作者:陈辉,蔡华锋 主编

页数:426

字数:630000

版权说明:本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com

<<现代电气控制设备>>

内容概要

陈辉等编著的《现代电气控制设备》以国内广泛使用的欧姆龙公司CP1H 系列PLC为例,以接触器-继电器控制系统为基础,介绍PLC的工作原理、特点、硬件结构、编程软件 与指令系统,并从工程应用实际出发,详细介绍梯形图程序的常用设计方法、PLC系统设计与调试方 法及PLC实际应用中应注意的问题。

《现代电气控制设备》不仅介绍了PLC在开关量、模拟量控制系统中的应用与PLC网络通信,同时以工程应用实例介绍了PLC控制系统在顺序系统、变频系统和伺服系统中的应用。

《现代电气控制设备》可作为高等院校电气工程及自动化、机电一体化及其他相关专业的PLC教材, 也可供工程技术人员自学或作为培训教材使用。

<<现代电气控制设备>>

书籍目录

第1章 电气控制基础

- 1.1 常用低压电器
- 1.1.1 常用低压电器的分类
- 1.1.2 接触器
- 1.1.3 控制继电器
- 1.1.4 主令电器
- 1.1.5 刀开关
- 1.1.6 熔断器
- 1.1.7 断路器
- 1.1.8 控制器
- 1.1.9 电器的文字符号和图形符号
- 1.2 基本电气控制系统设计原则
- 1.2.1 电力拖动方案的确定和电动机的选择
- 1.2.2 电气原理图的绘制
- 1.2.3 设计电气控制线路的一般原则
- 1.2.4 电气控制线路设计方法
- 1.3 典型电气控制系统
- 1.3.1 三相鼠笼式异步电动机的启动控制线路
- 1.3.2 三相鼠笼式异步电动机的降压启动线路
- 1.3.3 三相鼠笼式异步电动机的制动控制线路
- 1.3.4 绕线式异步电动机控制线路
- 1.4 电气控制系统制图工具
- 1.4.1 AutoCAD的安装
- 1.4.2 电气工程CAD制图规范
- 1.4.3 AutoCAD 2011制图基础
- 1.4.4 常用电气元件的绘制
- 1.4.5 电动机控制电路图的绘制
- 第2章 可编程控制器基础知识
- 2.1 概述
- 2.2 PLC与其他控制系统的比较
- 2.3 PLC的基本组成
- 2.4 PLC的工作原理
- 2.5 PLC的性能指标及发展历史与趋势
- 2.5.1 PLC的性能指标
- 2.5.2 PLC的发展历史
- 2.5.3 PLC的发展趋势
- 2.5.4 PLC行业就业前景
- 2.6 国外典型的PLC产品介绍
- 2.6.1 PLC系列产品的分类
- 2.6.2 PLC的应用范围
- 2.6.3 国外典型的PLC产品介绍
- 2.7 IEC 61131标准介绍
- 第3章 CP1H系列可编程控制器
- 3.1 CP1H系列产品概述
- 3.1.1 CP1H系列产品的设计思路

<<现代电气控制设备>>

- 3.1.2 CP1H系列产品的功能与应用
- 3.1.3 CP1H系列产品的其他功能
- 3.1.4 CP1H系列产品的软件特点
- 3.1.5 CP1H系列产品的性能特点
- 3.2 CP1H CPU系列分类与结构介绍
- 3.2.1 CP1H CPU系列产品分类与编号识别方法
- 3.2.2 CP1H CPU物理结构
- 3.3 CP1H的功能介绍
- 3.3.1 中断功能简介
- 3.3.2 输入中断(直接模式)
- 3.3.3 输入中断 (计数器模式)
- 3.3.4 定时中断
- 3.3.5 高速计数器中断
- 3.3.6 外部中断
- 3.3.7 高速计数器功能简介
- 3.3.8 脉冲输出
- 3.4 CP1H的I/O存储器与分配
- 3.4.1 各I/O存储区域简介
- 3.4.2 输入/输出继电器与I/O分配
- 3.5 应用实例
- 第4章 欧姆龙CP1H系列指令系统
- 4.1 PLC编程介绍
- 4.1.1 PLC的编程语言简介
- 4.1.2 梯形图的几点说明
- 4.2 CX-P编程软件的介绍
- 4.2.1 CX-P软件的安装
- 4.2.2 CX-P软件的使用
- 4.2.3 PLC与计算机的连接
- 4.2.4 编程规则
- 4.3 CP1H系列指令系统
- 4.3.1 指令格式
- 4.3.2 指令分类
- 4.3.3 常用基本指令
- 4.3.4 其他时序输入/输出指令
- 4.3.5 时序控制指令
- 4.3.6 定时器和计数器指令
- 4.3.7 数据传送指令
- 4.3.8 数据比较指令
- 4.3.9 数据移位指令
- 4.3.10 数据转换指令
- 4.3.11 数据运算指令
- 4.3.12 逻辑运算指令
- 4.3.13 子程序指令
- 4.3.14 中断控制指令
- 4.3.15 高速计数/脉冲输出指令
- 4.3.16 数据控制指令
- 4.3.17 调试与错误诊断指令

<<现代电气控制设备>>

4.3.18 特殊指令

习题

第5章 可编程控制器控制系统的设计

- 5.1 PLC控制系统设计的基本原则与步骤
- 5.1.1 PLC控制系统设计的基本原则
- 5.1.2 PLC控制系统设计的步骤
- 5.2 PLC控制系统硬件设计
- 5.2.1 PLC的选择
- 5.2.2 PLC与输入/输出设备的连接
- 5.2.3 减少I/O点数的措施
- 5.3 PLC控制系统软件设计
- 5.3.1 梯形图概述
- 5.3.2 梯形图的编程规则
- 5.4 PLC控制系统的调试与检查
- 5.4.1 PLC调试方法及步骤
- 5.4.2 PLC故障检查
- 5.5 PLC控制系统的安装与维护
- 5.5.1 PLC的安装
- 5.5.2 PLC的维护
- 5.6 PLC控制系统的施工设计
- 5.6.1 绘图原则
- 5.6.2 电气布置图的绘制
- 5.6.3 电气接线图的绘制
- 5.6.4 电气控制柜(箱)的设计
- 第6章 可编程控制器的通信与网络
- 6.1 可编程控制器通信基础
- 6.1.1 数据通信概述
- 6.1.2 数据通信的传输方式
- 6.1.3 数据通信的主要技术指标
- 6.1.4 PLC串行通信接口
- 6.1.5 通信介质
- 6.2 可编程控制器网络基础
- 6.2.1 局域网的拓扑结构
- 6.2.2 网络协议
- 6.3 欧姆龙PLC网络系统
- 6.3.1 欧姆龙PLC网络系统概述
- 6.3.2 信息层网络以太网
- 6.3.3 Controller Link控制器网
- 6.3.4 CompoBus/D设备网
- 6.3.5 CompoBus/S器件网
- 6.4 欧姆龙PLC的串行通信系统
- 6.4.1 欧姆龙PLC的串行通信系统概述
- 6.4.2 上位链接通信
- 6.4.3 无协议通信
- 6.4.4 一对一PLC链接
- 6.4.5 NT链接通信
- 6.5 欧姆龙PLC与上位机链接应用实例

<<现代电气控制设备>>

- 6.5.1 上位机与PLC通信目标
- 6.5.2 HOSTLINK通信协议与设置
- 6.5.3 VB与CP1H通信实践
- 第7章 现代电气控制技术工程应用实践
- 7.1 PLC在顺序控制系统中的应用
- 7.1.1 顺序控制设计方法简介
- 7.1.2 大米加工碾米系统概述
- 7.1.3 碾米系统资源分配
- 7.1.4 碾米系统程序设计
- 7.2 PLC在变频器控制系统中的应用
- 7.2.1 变频器的工作原理与选型
- 7.2.2 变频器多段速控制
- 7.2.3 变频器无极调速控制
- 7.2.4 变频器与PLC通信
- 7.3 PLC在伺服控制系统中的应用
- 7.3.1 伺服电机的选型原则
- 7.3.2 伺服控制系统电路设计
- 7.3.3 伺服系统控制程序
- 7.4 PLC与组态王应用实例
- 7.4.1 组态王6.52软件介绍
- 7.4.2 组态王6.52实例详解
- 7.4.3 组态王6.52与CP1H连接

参考文献

附录1 CP1H系列PLC功能指令一览表

附录2 CP1H系列PLC资源一览表

附录3 CP1H系列PLC异常及其处理

<<现代电气控制设备>>

版权说明

本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com