微電子封裝組件的建模和仿真

出版時(shí)間:2012-1  出版社:化學(xué)工業(yè)出版社  作者:劉勝  頁數(shù):564  

內(nèi)容概要

  隨著電子封裝的發(fā)展,電子封裝已從傳統(tǒng)的四個主要功能(電源系統(tǒng)、信號分布及傳遞、散熱及機(jī)械保護(hù))擴(kuò)展為六個功能,即增加了DFX及系統(tǒng)測試兩個新的功能。其中DFX是為“X”而設(shè)計(jì),X包括:可制造性、可靠性、可維護(hù)性、成本,甚至六西格瑪。DFX有望在產(chǎn)品設(shè)計(jì)階段實(shí)現(xiàn)工藝窗口的確定、可靠性評估和測試結(jié)構(gòu)及參數(shù)的設(shè)計(jì)等功能,真正做到“第一次就能成功”,從而將計(jì)算機(jī)輔助工程(CAE)變?yōu)橛?jì)算機(jī)主導(dǎo)工程(CE),以大大加速產(chǎn)品的上市速度。本書是全面介紹DFX在封裝中應(yīng)用的圖書。作為封裝工藝過程和快速可靠性評估及測試建模仿真的第一本專著,《微電子封裝組件的建模和仿真:制造可靠性與測試》中包含兩位作者劉勝、劉勇在工業(yè)界二十多年的豐富經(jīng)驗(yàn),以及在MEMS、IC和LED封裝部分成功的實(shí)例,希望能給國內(nèi)同行起到拋磚引玉的作用。同時(shí),讀者將會從書中的先進(jìn)工程設(shè)計(jì)和微電子產(chǎn)品的并行工程和協(xié)同設(shè)計(jì)方法中受益。《微電子封裝組件的建模和仿真:制造可靠性與測試》主要讀者對象為學(xué)習(xí)DFX(制造工藝設(shè)計(jì)、測試設(shè)計(jì)、可靠性設(shè)計(jì)等)的研究人員、工程師和學(xué)生等。

書籍目錄

ForewordForewordPrefaceAcknowledgmentsAbout the Autho Part I Mechanics and Modeling1 Co titutive Models and Finite Element Method1.1 Co titutive Models for Typical Materials1.1.1 Linear Elasticity1.1.2 Elastic-Visco-Plasticity1.2 Finite Element Method1.2.1 Basic Finite Element Equatio 1.2.2 Nonlinear Solution Methods1.2.3 Advanced Modeling Techniques in FiniteElement Analysis1.2.4 Finite Element Application in SemiconductorPackaging Modeling1.3 Chapter SummaryReferences2 Material and Structural Testing for Small Samples2.1 Material Testing for Solder Joints2.1.1 Specime 2.1.2 A Thermo-mechanical Fatigue Tester2.1.3 Te ile Test2.1.4 Creep Test2.1.5 Fatigue Test2.2 Scale Effect of Packaging Materials2.2.1 Specime 2.2.2 Experimental Results and Discussio 2.2.3 Thin Film Scale Dependence for Polymer Thin Films2.3 Two-ball Joint Specimen Fatigue Testing2.4 Chapter SummaryReferences3 Co titutive and Use-supplied Subroutines for Solde Co idering Damage Evolution3.1 Co titutive Model for Tin-lead Solder Joint3.1.1 Model Formulation3.1.2 Determination of Material Co tants3.1.3 Model Prediction3.2 Visco-elastic-plastic Properties and Co titutive Modeling of Under?lls3.2.1 Co titutive Modeling of Under?lls3.2.2 Identi?cation of Material Co tants3.2.3 Model Veri?cation and Prediction3.3 A Damage Coupling Framework of Uni?ed Viscoplasticityfor the Fatigure of Solder Alloys3.3.1 Damage Coupling Thermodynamic Framework3.3.2 Large Deformation Formulation3.3.3 Identi?cation of the Material Paramete 3.3.4 Creep Damage3.4 User-supplied Subroutines for Solde  Co ideringDamage Evolution3.4.1 Return-Mapping Algorithm and FEA Implementation3.4.2 Advanced Features of the Implementation3.4.3 Applicatio  of the Methodology3.5 Chapter SummaryReferences4 Accelerated Fatigue Life Assessment Approaches for Solde in Packages4.1 Life Prediction Methodology4.1.1 Strain-Based Approach4.1.2 Energy-Based Approach4.1.3 Fracture Mechanics-Based Approach4.2 Accelerated Testing Methodology4.2.1 Failure Modes via Accelerated Testing Bounds4.2.2 Isothermal Fatigue via Thermal Fatigue4.3 Co titutive Modeling Methodology4.3.1 Separated Modeling via Uni?ed Modeling4.3.2 Viscoplasticity with Damage Evolution4.4 Solder Joint Reliability via FEA4.4.1 Life Prediction of Ford Joint Specimen4.4.2 Accelerated Testing: I ights from Life Prediction4.4.3 Fatigue Life Prediction of a PQFP Package4.5 Life Prediction of Flip-Chip Packages4.5.1 Fatigue Life Prediction with and without Under?ll4.5.2 Life Prediction of Flip-Chips without Under?ll via Uni?ed and SeparatedCo titutive Modeling4.5.3 Life Prediction of Flip-Chips under Accelerated Testing4.6 Chapter SummaryReferences5 Multi-physics and Multi-scale Modeling5.1 Multi-physics Modeling5.1.1 Direct-coupled Analysis5.1.2 Sequential Coupling5.2 Multi-scale Modeling5.3 Chapter SummaryReferences6 Modeling Validation Tools6.1 Structural Mechanics Analysis6.2 Requirements of Experimental Methods for StructuralMechanics Analysis6.3 Whole Field Optical Techniques6.4 Thermal Strai  Measurements Using Moir e Interferometry6.4.1 Thermal Strai  in a Plastic Ball Grid Array(PBGA) Interconnection6.4.2 Real-time Thermal Deformation MeasurementsUsing Moir e Inteferometry6.5 In-situ Measurements on Micro-machined Se o 6.5.1 Micro-machined Membrane Structurein a Chemical Se or6.5.2 In-situ Measurement Using Twyman-GreenInterferometry6.5.3 Membrane Deformatio  due to Power Cycles6.6 Real-time Measurements Using Speckle Inteferometry6.7 Image Processing and Computer Aided Optical Techniques6.7.1 Image Processing for Fringe Analysis6.7.2 Phase Shifting Technique for IncreasingDisplacement Resolution6.8 Real-Time Thermal-Mechanical Loading Tools6.8.1 Micro Mechanical Testing6.8.2 Environmental Chamber6.9 Warpage Measurement Using PM-SM System6.9.1 Shadow Moir e and Project Moir e Setup6.9.2 Warpage Measurement of a BGA, Two Crowded PCBs6.10 Chapter SummaryReferences7 Application of Fracture Mechanics7.1 Fundamental of Fracture Mechanics7.1.1 Energy Release Rate7.1.2 J Integral7.1.3 Interfacial Crack7.2 Bulk Material Cracks in Electronic Packages7.2.1 Background7.2.2 Crack Propagation in Ceramic/Adhesive/Glass System7.2.3 Results7.3 Interfacial Fracture Toughness7.3.1 Background7.3.2 Interfacial Fracture Toughness of Flip-chip Packagebetween Passivated Silicon Chip and Under?ll7.4 Three-dime ional Energy Release Rate Calculation7.4.1 Fracture Analysis7.4.2 Results and Comparison7.5 Chapter SummaryReferences8 Concurrent Engineering for Microelectronics8.1 Design Optimizatio 8.2 New Developments and Trends in IntegratedDesign Tools8.3 Chapter SummaryReferences9 Typical IC Packaging and Assembly Processes9.1 Wafer Process and Thinning9.1.1 Wafer Process Stress Models9.1.2 Thin Film Deposition9.1.3 Backside Grind for Thinning9.2 Die Pick Up9.3 Die Attach9.3.1 Material Co titutive Relatio 9.3.2 Modeling and Numerical Strategies9.3.3 FEA Simulation Result of Flip-Chip Attach9.4 Wire Bonding9.4.1 Assumption, Material Properties and Method of Analysis9.4.2 Wire Bonding Process with Different Paramete 9.4.3 Impact of Ultrasonic Amplitude9.4.4 Impact of Ultrasonic Frequency9.4.5 Impact of Friction Coef?cients between Bond Pad and FAB9.4.6 Impact of Different Bond Pad Thickness9.4.7 Impact of Different Bond Pad Structures9.4.8 Modeling Results and Discussion for Cooling SubstrateTemperature after Wire Bonding9.5 Molding9.5.1 Molding Flow Simulation9.5.2 Curing Stress Model9.5.3 Molding Ejection and Clamping Simulation9.6 Leadframe Forming/Singulation9.6.1 Euler Forward ve us Backward Solution Method9.6.2 Punch Process Setup9.6.3 Punch Simulation by ANSYS Implicit9.6.4 Punch Simulation by LS-DYNA9.6.5 Experimental Data9.7 Chapter SummaryReferences10 Opto Packaging and Assembly10.1 Silicon Substrate Based Opto Package Assembly10.1.1 State of the Technology10.1.2 Monte Carlo Simulation of Bonding/Soldering Process10.1.3 Effect of Matching Fluid10.1.4 Effect of the Encapsulation10.2 Welding of a Pump Laser Module10.2.1 Module Description10.2.2 Module Packaging Process Flow10.2.3 Radiation Heat Tra fer Modeling for HermeticSealing Process10.2.4 Two-Dime ional FEA Modeling for Hermetic Sealing10.2.5 Cavity Radiation Analyses Results and Discussio 10.3 Chapter SummaryReferences11 MEMS and MEMS Package Assembly11.1 A Pressure Se or Packaging (Deformation and Stress)11.1.1 Piezoresistance in Silicon11.1.2 Finite Element Modeling and Geometry11.1.3 Material Properties11.1.4 Results and Discussion11.2 Mounting of Pressure Se or11.2.1 Mounting Process11.2.2 Modeling11.2.3 Results11.2.4 Experiments and Discussio 11.3 Thermo-Fluid Based Accelerometer Packaging11.3.1 Device Structure and Operation Principle11.3.2 Linearity Analysis11.3.3 Design Co ideration11.3.4 Fabrication11.3.5 Experiment11.4 Plastic Packaging for A Capacitance Based Accelerometer11.4.1 Micro-Machined Accelerometer11.4.2 Wafer-Level Packaging11.4.3 Packaging of Capped Accelerometer11.5 Tire Pressure Monitoring System (TPMS) Antenna11.5.1 Test of TPMS System with Wheel Antenna11.5.2 3D Electromagnetic Modeling of The Wheel Antenna11.5.3 Stress Modeling of I talled TPMS11.6 Thermo-Fluid Based Gyroscope Packaging11.6.1 Operating Principle and Design11.6.2 Analysis of Angular Acceleration Coupling11.6.3 Numerical Simulation and Analysis11.7 Microjets for Radar and LED Cooling11.7.1 Microjet Array Cooling System11.7.2 Preliminary Experiments11.7.3 Simulation and Model Veri?cation11.7.4 Comparison and Optimization of Three Microjet Devices11.8 Air Flow Se or11.8.1 Operation Principle11.8.2 Simulation of Flow Conditio 11.8.3 Simulation of Temperature Field on the Se orChip Surface11.9 Direct Numerical Simulation of Particle Separationby Direct Current Dielectrophoresis11.9.1 Mathematical Model and Implementation11.9.2 Results and Discussion11.10 Modeling of Micro-Machine for Use in Gastrointestinal Endoscopy11.10.1 Methods11.10.2 Results and Discussion11.11 Chapter SummaryReference12 System in Package (SIP) Assembly12.1 Assembly Process of Side by Side Placed SIP12.1.1 Multiple Die Attach Process12.1.2 Cooling Stress and Warpage Simulation after Molding12.1.3 Stress Simulation in Trim Process12.2 Impact of the Nonlinear Materials Behavio  on the Flip-chipPackaging Assembly Reliability12.2.1 Finite Element Modeling and Effect of Material Models12.2.2 Experiment12.2.3 Results and Discussio 12.3 Stacked Die Flip-chip Assembly Layout and the Material Selection12.3.1 Finite Element Model for the Stack Die FSBGA12.3.2 Assembly Layout Investigation12.3.3 Material Selection12.4 Chapter SummaryReferencesPart III Modeling in Microelectronic Package Reliability and Test13 Wafer Probing Test13.1 Probe Test Model13.2 Parameter Probe Test Modeling Results and Discussio 13.2.1 Impact of Probe Tip Geometry Shapes13.2.2 Impact of Contact Friction13.2.3 Impact of Probe Tip Scrub13.3 Comparison Modeling: Probe Test ve us Wire Bonding13.4 Design of Experiment (DOE) Study and Correlation of ProbingExperiment and FEA Modeling13.5 Chapter SummaryReferences14 Power and Thermal Cycling, Solder Joint Fatigue Life14.1 Die Attach Process and Material Relatio 14.2 Power Cycling Modeling and Discussion14.3 Thermal Cycling Modeling and Discussion14.4 Methodology of Solder Joint Fatigue Life Prediction14.5 Fatigue Life Prediction of a Stack Die Flip-chip on Silicon (FSBGA)14.6 Effect of Cleaned and Non-Cleaned Situatio  on the Reliabilityof Flip-Chip Packages14.6.1 Finite Element Models for the Clean and Non-Clean Cases14.6.2 Model Evaluation14.6.3 Reliability Study for the Solder Joints14.7 Chapter SummaryReferences15 Passivation Crack Avoidance15.1 Ratcheting-Induced Stable Cracking: A Synopsis15.2 Ratcheting in Metal Films15.3 Cracking in Passivation Films15.4 Design Modi?catio 15.5 Chapter SummaryReferences16 Drop Test16.1 Controlled Pulse Drop Test16.1.1 Simulation Methods16.1.2 Simulation Results16.1.3 Parametric Study16.2 Free Drop16.2.1 Simulated Drop Test Procedure16.2.2 Modeling Results and Discussion16.3 Portable Electronic Devices Drop Test and Simulation16.3.1 Test Set Up16.3.2 Modeling and Simulation16.3.3 Results16.4 Chapter SummaryReferences17 Electromigration17.1 Basic Migration Formulation and Algorithm17.2 Electromigration Examples from IC Device and Package17.2.1 A Sweat Structure17.2.2 A Flip-chip CSP with Solder Bumps17.3 Chapter SummaryReferences18 Popcorning in Plastic Packages18.1 Statement of Problem18.2 Analysis18.3 Results and Compariso 18.3.1 Behavior of a Delaminated Package due to PulsedHeating-Veri?cation18.3.2 Convergence of the Total Strain Energy Release Rate18.3.3 Effect of Delamination Size and Various Processesfor a Thick Package18.3.4 Effect of Moisture Expa ion Coef?cient18.4 Chapter SummaryReferencesPart IV Modern Modeling and Simulation Methodologies19 Classical Molecular Dynamics19.1 General Description of Molecular Dynamics Method19.2 Mechanism of Carbon Nanotube Welding onto the Metal19.2.1 Computational Methodology19.2.2 Results and Discussion19.3 Applicatio  of Car–Parrinello Molecular Dynamics19.3.1 Car–Parrinello Simulation of Initial Growth Stageof Gallium Nitride on Carbon Nanotube19.3.2 Effects of Mechanical Deformation on Outer SurfaceReactivity of Carbon Nanotubes19.3.3 Adsorption Con?guration of Magnesium on WurtziteGallium Nitride Surface Using Fi t-principles Calculatio 19.4 Nano-welding by RF Heating19.5 Chapter SummaryReferencesAppendixSummary of Continuous MechanicsIndex

編輯推薦

  雖然集成電路封裝在設(shè)計(jì)階段對建模和仿真的需求正在不斷增加,但是目前的大多數(shù)組件工藝和多種可靠性測試仍然依據(jù)耗時(shí)的“測試一嘗試”的方法來獲得最優(yōu)的方案。建模和仿真能夠自如地通過虛擬實(shí)驗(yàn)設(shè)計(jì)的方法獲得最優(yōu)方案。這種方法極大地降低了電子產(chǎn)品的成本和生產(chǎn)時(shí)間,對于新產(chǎn)品的開發(fā)效果尤其顯著。使用建模和仿真技術(shù)對促進(jìn)未來三維封裝的發(fā)展將會越來越有必要。在《微電子封裝組件的建模和仿真:制造可靠性與測試》中,劉勝博士和劉勇博士將會介紹建模與仿真的基礎(chǔ)知識和高級技巧以幫助相關(guān)領(lǐng)域的人員運(yùn)用建模與仿真的方法解決他們遇到的問題。本書適用于微電子封裝和互聯(lián)設(shè)計(jì)、裝配制造、可靠性/質(zhì)量及半導(dǎo)體材料相關(guān)領(lǐng)域的工程師、研究人員和研究生。相關(guān)行業(yè)的產(chǎn)品經(jīng)理、應(yīng)用工程師和銷售人員,在需要向客戶介紹裝配制造過程、可靠性和測試會如何影響產(chǎn)品質(zhì)量時(shí),也可以從本書中獲得裨益。

圖書封面

評論、評分、閱讀與下載


    微電子封裝組件的建模和仿真 PDF格式下載


用戶評論 (總計(jì)0條)

 
 

 

250萬本中文圖書簡介、評論、評分,PDF格式免費(fèi)下載。 第一圖書網(wǎng) 手機(jī)版

京ICP備13047387號-7