出版時(shí)間:2013-1 出版社:吳德金 科學(xué)出版社有限責(zé)任公司 (2013-01出版) 作者:吳德金
內(nèi)容概要
第1章簡(jiǎn)要介紹磁等離子體的基本物理過(guò)程和描述方法,主要為不具備等離子體物理背景的讀者提供必要的基本概念和基礎(chǔ)知識(shí)。第2-5章系統(tǒng)地介紹動(dòng)力學(xué)阿爾文波的理論,包括動(dòng)力學(xué)阿爾文波的基本物理特性(第2章)、不穩(wěn)定性和產(chǎn)生機(jī)制(第3章)、非線性孤立結(jié)構(gòu)(第4章)和復(fù)雜成分等離子體中的動(dòng)力學(xué)阿爾文波(第5章)。第6章主要介紹地面和空間等離子體中動(dòng)力學(xué)阿爾文波的實(shí)驗(yàn)研究。第7-9章將聚焦在動(dòng)力學(xué)阿爾文波在空間和太陽(yáng)等離子體活動(dòng)現(xiàn)象的應(yīng)用上,包括極光高能電子加速現(xiàn)象(第7章)、日冕磁等離子體結(jié)構(gòu)非均勻加熱現(xiàn)象(第8章)、以及日冕重離子反常加熱現(xiàn)象(第9章)。最后的第10章是關(guān)于動(dòng)力學(xué)阿爾文波這一領(lǐng)域進(jìn)一步發(fā)展展望的一個(gè)簡(jiǎn)單評(píng)述。
書(shū)籍目錄
Brief IntroductionForewordPrefaceChapter 1 Descriptions of Magneto-Plasmas 1.1 Introduction 1.2 Basic Parameters and Characteristics 1.2.1 Weakly Coupled Condition 1.2.2 Debye Shielding 1.2.3 Langmuir Oscillation 1.2.4 Coulomb Collision 1.2.5 Anisotropy of Magneto-Plasmas 1.3 Motion of Individual Particles in Magnetic Fields 1.3.1 Gyrating Motion in a Uniform Field 1.3.2 Drift Motion in a Nonuniform Field 1.3.3 Adiabatic Invariants 1.4 Kinetic Description of Plasmas 1.4.1 Exact Klimontovich Equation 1.4.2 Mean Kinetic Equations 1.4.3 Drift- and Gyro-Kinetic Equations 1.5 Two-Fluid Description of Plasmas 1.5.1 Velocity Moment Equations 1.5.2 Briginskii Equations for Fluid Closure 1.5.3 Adiabatic and Bi-adiabatic Equations 1.6 MHD Description of Plasmas 1.6.1 MHD Equations 1.6.2 Generalized Ohm Law 1.6.3 Ideal MHD: Magnetic Frozen 1.6.4 Resistive MHD: Magnetic Diffusion 1.6.5 Hall MHD: Anisotropic Ohm Law 1.6.6 Microphysics of MHD DynamicsChapter 2 Basic Characteristics: from AWs to KAWs 2.1 Introduction 2.2 AWs Based on MHD Description 2.2.1 AWs in the Ideal MHD 2.2.2 Basic Characteristics of AWs 2.2.3 Effect of Resistive Term on AWs 2.2.4 Effect of Hall Term on AWs 2.3 KAWs Based on Two-Fluid Decription 2.3.1 General Two-fluid Dispersion Equation 2.3.2 Low-frequency Dispersion Relations 2.3.3 KAW: Short-wavelength Modification 2.4 A Few Crucial Characteristics of KAWs 2.4.1 Low-β Cases: Kinetic and Inertial Limits 2.4.2 Anisotropic Propagation 2.4.3 Electromagnetic Polarization StatesChapter 3 KAW Instabilities and Generation Mechanisms... 3.1 Introduction 3.2 Low-Frequency Kinetic Dispersion Equation 3.2.1 General Dispersion Equation 3.2.2 Bi-Maxwell Distribution 3.2.3 Low-frequency Approximation 3.2.4 MHD Limit: Fire-Hose and Mirror Instabilities 3.3 Anisotropic Temperature Instabilities 3.3.1 Anisotropic Dispersion Equation 3.3.2 Classic Limit with Zero Ion Gyroradius 3.3.3 Kinetic Effect with Finite Ion Gyroradius 3.4 Field-Aligned Current Instabilities 3.4.1 Isotropic Plasma Case 3.4.2 Anisotropic Plasma Case 3.5 Ion Beam Intabilitiy 3.5.1 Beam-return Current Systems 3.5.2 Ion Beam Instability 3.6 Other Generation Mechanisms 3.6.1 Resonant Mode Conversion of AWs 3.6.2 Parametric Decay Due to Wave-wave Coupling 3.6.3 Anisotropic Cascade of MHD TurbulenceChapter 4 Nonlinear Solitary Structures of KAWs 4.1 Introduction 4.2 Sagdeev Equation of One-Dimentional SKAWs 4.2.1 Basic Equation and Linear Dispersion Relation 4.2.2 Sagdeev Equation and Sagdeev Potential 4.3 Existent Criterion and Parameter Dependence 4.3.1 Criterion for Existence of SKAWs 4.3.2 Parametric Dependence of SKAWs 4.4 Analytic Solutions of the Sagdeev Equation 4.4.1 Analytic Solution in the Inertial Limit 4.4.2 KdV Soliton in Small-amplitude Limit 4.5 Two-Dimensional SKAWs: Basic Physics Model 4.5.1 Basic Equations 4.5.2 Dipole Vortex Solutions 4.6 Two-Dimentional SKAWs: Dipole Vortex Structure 4.6.1 Dipole Density Soliton in a Dipole Vortex 4.6.2 Electromagnetic Rotation in a Dipole VortexChapter 5 KAWs in Complex Plasmas 5.1 Introduction 5.2 KAWs in Multi-Ion Plasmas 5.2.1 Slowing of KAWs Due to Heavy Ions 5.2.2 Coupling of KAWs to Ion-ion Hybrid Waves 5.2.3 Effects of Finite Ion Temperatures on KAWs 5.2.4 SKAWs in Multi-ion Plasmas 5.3 KAWs in Partly Ionized Plasmas 5.3.1 Elastic and Inelastic Collisions 5.3.2 Drift Instability via Elastic Collisions 5.3.3 Ionization Instability via Inelastic Collisions 5.4 KAWs in Dusty Plasmas 5.4.1 Basic Processes and Properties 5.4.2 Electrostatic Waves in Dusty Plasmas 5.4.3 KAWs in Dusty PlasmasChapter 6 Experimental Studies of KAWs 6.1 Introduction 6.2 Early Laboratory Experiments of AWs 6.3 Laboratory Experiments of KAWs 6.3.1 Mode Conversion of KAWs and Plasma Heating 6.3.2 Dispersion Relation and Basic Properties of KAWs 6.3.3 Excitation of KAWs and Nonlinear Phenomena 6.4 Space in situ Identification of KAWs 6.4.1 Early Primary Observations of KAWs 6.4.2 Refined Identifications of SKAWs 6.4.3 Dipole Density Solitons and Two-dimensional SKAWs 6.4.4 Identification of KAW Turbulent Spectra 6.5 Space Observations vs Laboratory Experiments 6.6 Solar Observed Evidence of KAWsChapter 7 Auroral Electron Acceleration by DSKAWs 7.1 Introduction 7.2 Aurora and Auroral Electron Acceleration 7.3 DSKAWs and Their Shock-like Structures 7.3.1 Basic Physics Model 7.3.2 Electron Field-aligned Acceleration by DKAW 7.4 Auroral Acceleration Mechanism by DSKAW 7.4.1 Empirical Model of Auroral Plasma 7.4.2 Auroral Electron Acceleration by DSKAWs 7.4.3 Comparison with ObservationsChapter 8 Anomalous Energization of Coronal Ions by KAWs 8.1 Introduction 8.2 Anomalous Energization Phenomena of Coronal Ions 8.3 Empirical Model of Coronal Hole Structures 8.3.1 Radial Model 8.3.2 Transverse Model 8.4 Physical Model for Heavy Ion-SKAW Interaction 8.4.1 Nonlinear Generation of KAWs in Coronal Holes 8.4.2 Heavy Ion-SKAW Interaction 8.5 Energization of Heavy Ions in SKAWs 8.6 Application to Energization of Coronal IonsChapter 9 Nonuniform Heating of Coronal Plasmas by KAWs 9.1 Introduction 9.2 Magnetic Structure and Heating Problem of the Solar Corona 9.3 Upper Chromospheric Heating by Ohmic Dissipation of KAWs 9.3.1 Sunspot Upper-chromospheric Heating Problem 9.3.2 Ohmic Dissipation of KAWs by Coulomb Collision 9.3.3 Upper-chromospheric Heating by KAWs 9.4 Coronal Loop Heating by Landau Damping of KAWs 9.4.1 Coronal Loops and Their Heating Problem 9.4.2 Landau Damping of KAWs 9.4.3 Coronal Loop Heating by KAWs 9.5 Coronal Plume Heating by Landau Damping of KAWs 9.5.1 Coronal Plumes and Their Heating Problem 9.5.2 Coronal Plume Heating by KAWs 9.6 A Unified Scenario for the Coronal Heating?Chapter 10 Perspectives of KAWs 10.1 Generation and Dissipation of KAWs 10.2 Turbulent Cascade: from AWs to KAWs 10.3 Magneto-Plasma Filaments by KAWs 10.4 Particle Energization by KAWsReferencesIndex
編輯推薦
吳德金研究員10多年來(lái)一直致力于動(dòng)力學(xué)阿爾文波的理論和應(yīng)用研究,有關(guān)研究成果曾獲得“江蘇省2006年度科技進(jìn)步一等獎(jiǎng)”。由他撰寫的《動(dòng)力學(xué)阿爾文波--理論實(shí)驗(yàn)和應(yīng)用(精)》這部學(xué)術(shù)專著不僅系統(tǒng)闡述了動(dòng)力學(xué)阿爾文波的物理特性、基本理論和實(shí)驗(yàn)研究,也深入地介紹了他與合作者在這一國(guó)際前沿領(lǐng)域的最新研究成果,特別是動(dòng)力學(xué)阿爾文波在極光高能電子加速、日冕等離子體非均勻加熱、以及延伸日冕中少量重離子“反常加熱”等粒子能化現(xiàn)象中的應(yīng)用。來(lái)自比利時(shí)“空間和高層大氣物理學(xué)”研究所(Belgian Institute for Space Aeronomy)的物理學(xué)家Yuriy M. Voitenko教授在為該書(shū)撰寫的序言中推薦該書(shū)彌補(bǔ)了近20年來(lái)動(dòng)力學(xué)阿爾文波研究領(lǐng)域里的一項(xiàng)空白。
圖書(shū)封面
評(píng)論、評(píng)分、閱讀與下載
250萬(wàn)本中文圖書(shū)簡(jiǎn)介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書(shū)網(wǎng) 手機(jī)版