表面活性劑湍流減阻

出版時(shí)間:2012-6  出版社:高等教育出版社  作者:楊鳳臣  頁(yè)數(shù):257  字?jǐn)?shù):430000  

內(nèi)容概要

  表面活性劑湍流減阻是流體動(dòng)力學(xué)領(lǐng)域多年來的研究熱點(diǎn),這一現(xiàn)象同時(shí)與湍流、流變學(xué)、流體動(dòng)力學(xué)等多個(gè)方面密切相關(guān),而且對(duì)其進(jìn)行應(yīng)用推廣需要化工、機(jī)械、市政等不同領(lǐng)域知識(shí)的有機(jī)結(jié)合?!侗砻婊钚詣┩牧鳒p阻(英文版)》正是在這一背景下,基于表面活性劑湍流減阻流動(dòng)研究領(lǐng)域最新的實(shí)驗(yàn)、數(shù)值模擬和理論分析方面的研究成果,詳細(xì)闡述有關(guān)表面活性劑湍流減阻流動(dòng)的湍流特性、流變學(xué)物性、理論、特殊技術(shù)以及實(shí)際應(yīng)用方面的問題。
  《表面活性劑湍流減阻(英文版)》可供流體力學(xué)、工程熱物理、化學(xué)工程、空調(diào)、制冷等相關(guān)專業(yè)研究生以及相關(guān)研究領(lǐng)域的科研人員參考使用。

書籍目錄

Preface
1 Introduction
1.1 Background
1.2 Surfactant Solution
1.2.1 Anionic Surfactant
1.2.2 Cationic Surfactant
1.2.3 Nonionic Surfactant
1.2.4 Amphoteric Surfactant
1.2.5 Zwitterionic Surfactant
1.3 Mechanism and Theory of Drag Reduction by Surfactant
Additives
1.3.1 Explanations of the Turbulent DR Mechanism from the Viewpoint
of Microstructures
1.3.2 Explanations of the Turbulent DR Mechanism from the Viewpoint
of the Physics of Turbulence
1.4 Application Techniques of Drag Reduction by Surfactant
Additives
1.4.1 Heat Transfer Reduction of Surfactant Drag-reducing
Flow
1.4.2 Diameter Effect of Surfactant Drag-reducing Flow
1.4.3 Toxic Effect of Cationic Surfactant Solution
1.4.4 Chemical Stability of Surfactant Solution
1.4.5 Corrosion of Surfactant Solution
References
2 Drag Reduction and Heat Transfer Reduction Characteristics of
Drag-Reducing Surfactant Solution Flow
2.1 Fundamental Concepts of Turbulent Drag Reduction
2.2 Characteristics of Drag Reduction by Surfactant Additives and
Its Influencing Factors
2.2.1 Characteristics of Drag Reduction by Surfactant
Additives
2.2.2 Influencing Factors of Drag Reduction by Surfactant
Additives
2.3 The Diameter Effect of Surfactant Drag-reducing Flow and
Scale-up Methods
2.3.1 The Diameter Effect and Its Influence
2.3.2 Scale-up Methods
2.3.3 Evaluation of Different Scale-up Methods
2.4 Heat Transfer Characteristics of Drag-reducing Surfactant
Solution Flow and Its Enhancement Methods
2.4.1 Convective Heat Transfer Characteristics of Drag-reducing
Surfactant Solution Flow
2.4.2 Heat Transfer Enhancement Methods for Drag-reducing
Surfactant Solution Flows
References
3 Turbulence Structures in Drag-Reducing Surfactant Solution
Flow
3.1 Measurement Techniques for Turbulence Structures in
Drag-Reducing Flow
3.1.1 Laser Doppler Velocimetry
3.1.2 PIV
3.2 Statistical Characteristics of Velocity and Temperature Fields
in Drag-reducing Flow
3.2.1 Distribution of Averaged Quantities
3.2.2 Distribution of Fluctuation Intensities
3.2.3 Correlation Analyses of Fluctuating Quantities
3.2.4 Spectrum Analyses of Fluctuating Quantities
3.3 Characteristics of Turbulent Vortex Structures in Drag-reducing
Flow
3.3.1 Identification Method of Turbulent Vortex by Swirling
Strength
3.3.2 Distribution Characteristics of Turbulent Vortex in the x-y
Plane
3.3.3 Distribution Characteristics of Turbulent Vortex in the y-z
Plane
3.3.4 Distribution Characteristics of Turbulent Vortex in the x-z
Plane
3.4 Reynolds Shear Stress and Wall-Normal Turbulent Heat Flux
References
4 Numerical Simulation of Surfactant Drag Reduction
4.1 Direct Numerical Simulation of Drag-reducing Flow
4.1.1 A Mathematical Model of Drag-reducing Flow
4.1.2 The DNS Method of Drag-reducing Flow
4.2 RANS of Drag-reducing Flow
4.3 Governing Equation and DNS Method of Drag-reducing Flow
4.3.1 Governing Equation
4.3.2 Numerical Method
4.4 DNS Results and Discussion for Drag-reducing Flow and Heat
Transfer
4.4.1 The Overall Study on Surfactant Drag Reduction and Heat
Transfer by DNS
4.4.2 The Rheological Parameter Effect of DNS on Surfactant Drag
Reduction
4.4.3 DNS with the Bilayer Model of Flows with Newtonian and
Non-Newtonian Fluid Coexistence
4.5 Conclusion and Future Work
References
5 Microstructures and Rheological Properties of Surfactant
Solution
6 Application Techniques for Drag Reduction by Surfactant
Additives
Index

章節(jié)摘錄

版權(quán)頁(yè):   插圖:   1.3.2.4 Decoupling of Turbulent Fluctuations It has been indicated from many studies that the effect of drag reducer on turbulent flows also appears as the decreased correlation between the axial and radial fluctua-tions. This effect is named "decoupling." The decoupling of turbulent fluctuations can decrease the Reynolds stress. According to the quantitative relationship between Reynolds shear stress and the turbulent contribution to frictional drag coefficient deduced by Fukagata et al. (i.e., the FIK equation) (38), a decrease of Reynolds shear stress directly results in a decrease of the friction factor of turbulent flow, and so turbulent DR. Actually, a decrease of Reynolds stress is caused by twofold effects, that is, the decoupling of turbulent fluctuations and turbulence suppression (17,33,39-41 ).This postulation is also correct qualitatively. 1.3.2.5 Viscoelasticity All polymer and surfactant solutions with turbulent drag-reducing effects display viscoelastic rheological properties. With the development of viscoelastic fluid mechanics, some researchers proposed that the drag-reducing effect of polymer and surfactant solutions is the result of the interaction between viscoelasticity and turbulent vortices. The microstructures (polymer molecule chains or network structures in surfactant solution) in the drag reducer solution at a high-shear-rate region can absorb the turbulent kinetic energy of small vortices within the energy-containing range and store it. When the microstructures are diffused or convected to a low-shear-rate region,they will be relaxed to a random threadlike entanglement and the stored energy will be released to the low-wave-number vortices (large-scaled vortices) in the form of elastic stress waves, which greatly decreases the dissipation of turbulent kinetic energy and induces turbulent DR. The viscoelastic theory for the mechanism of turbulent DR by additives was proposed by DeGennes (42). The viscoelasticity postulation not only explains the turbulent DR phenomenon in many polymer and surfactant solution flows with viscoelasticity, but also estimates the DR rate quantitatively. It is also a powerful tool for studying the mechanism of turbulent DR from the viewpoint of the physics of turbulence and developing new quantitative analysis theories for turbulent drag-reducing flows. However, this postulation was challenged by the "anisotropic stresses"hypothesis proposed by Toonder (43).

編輯推薦

《"十二五"國(guó)家重點(diǎn)圖書:表面活性劑湍流減阻(英文版)》可供流體力學(xué)、工程熱物理、化學(xué)工程、空調(diào)、制冷等相關(guān)專業(yè)研究生以及相關(guān)研究領(lǐng)域的科研人員參考使用。

圖書封面

評(píng)論、評(píng)分、閱讀與下載


    表面活性劑湍流減阻 PDF格式下載


用戶評(píng)論 (總計(jì)1條)

 
 

  •   幫導(dǎo)師買的,還不錯(cuò)~
 

250萬本中文圖書簡(jiǎn)介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書網(wǎng) 手機(jī)版

京ICP備13047387號(hào)-7