蒙特卡羅統(tǒng)計(jì)方法

出版時(shí)間:2009-10  出版社:世界圖書出版公司  作者:(法)羅伯特 著  頁數(shù):645  
Tag標(biāo)簽:無  

前言

He sat,continuing to look down the nave,when suddenly the solution to the problem just seemed to present itself.It was so simple,SO obvious he just started to laugh——P.C.Doherty.Satan in St Mary'sMonte Carlo statistical methods,particularly those based on Markov chains,have now matured to be part of the standard set of techniques used by statisticians.This book is intended to bring these techniques into the classroom. being(we hope)a self-contained logical development of the subject,with all concepts being explained in detail.a(chǎn)nd all theorems.etc.having detailed proofs.There is also an abundance of examples and problems,relating the concepts with statistical practice and enhancing primarily the application of simulation techniques to statistical problems of various difficulties.This iS a textbook intended for a second-year graduate course.We do not assume that the reader has any familiarity with Monte Carlo techniques (such as random variable generation)or with any Markov chain theory. We do assume that the reader has had a first course in statistical theory at the level of Statistica!Inference bY Casella and Berger(1990).Unfortunately,a few times throughout the book a somewhat more advanced notion iS needed.We have kept these incidents to a minimum and have posted warnings when they occur.While this iS a book on simulation.whose actual implementation must be processed through a computer,no requirement lS made on programming skills or computing abilities:algorithms are presented in a program-like format but in plain text rather than in a specific programming language.(Most of the examples in the book were actually implemented in C.with the S-Plus graphical interface.)

內(nèi)容概要

It is a tribute to our profession that a textbook that was current in 1999 is starting to feel old. The work for the first edition of Monte Carlo Statistical Methods (MCSM1) was finished in late 1998, and the advances made since then, as well as our level of understanding of Monte Carlo methods, have grown a great deal. Moreover, two other things have happened. Topics that just made it into MCSM1 with the briefest treatment (for example, perfect sampling) have now attained a level of importance that necessitates a much more thorough treatment. Secondly, some other methods have not withstood the test of time or, perhaps, have not yet been fully developed, and now receive a more appropriate treatment.    When we worked on MCSM1 in the mid-to-late 90s, MCMC algorithms were already heavily used, and the flow of publications on this topic was atsuch a high level that the picture was not only rapidly changing, but also  necessarily incomplete. Thus, the process that we followed in MCSM1 was that of someone who was thrown into the ocean and was trying to grab onto the biggest and most seemingly useful objects while trying to separate the flotsam from the jetsam. Nonetheless, we also felt that the fundamentals of many of these algorithms were clear enough to be covered at the textbook alevel, so we" swam on.

作者簡介

作者:(法國)羅伯特(Christian P.Robert) (法國)George Casella

書籍目錄

Preface to the Second EditionPreface to the First Edition1 Introduction 1.1  Statistical Models 1.2  Likelihood Methods 1.3  Bayesian Methods 1.4  Deterministic Numerical Methods  1.4.1  Optimization  1.4.2  Integration  1.4.3  Comparison   1.5  Problems   1.6  Notes    1.6.1  Prior Distributions    1.6.2  Bootstrap Methods2  Random Variable Generation 2.1  Introduction  2.1.1  Uniform Simulation  2.1.2  The Inverse Transform  2.1.3  Alternatives  2.1.4  Optimal Algorithms 2.2  General Transformation Methods 2.3  Accept Reject Methods  2.3.1  The Fundamental Theorem of Simulation  2.3.2  The Accept-Reject Algorithm. 2.4  Envelope Accept Reject Methods  2.4.1  The Squeeze Principle    2.4.2  Log-Concave Densities 2.5  Problems   2.6  Notes   2.6.1  The Kiss Generator   2.6.2  Quasi-Monte Carlo Methods   2.6.3  Mixture Representations3   Monte Carlo Integration 3.1  Introduction 3.2  Classical Monte Carlo Integration 3.3  Importance Sampling  3.3.1  Principles  3.3.2  Finite Variance Estimators  3.3.3  Comparing Importance Sampling with Accept-Reject  3.4  Laplace Approximations 3.5  Problems 3.6  Notes  3.6.1  Large Deviations Techniques    3.6.2  The Saddlepoint Approximation4   Controling Monte Carlo Variance 4.1  Monitoring Variation with the CLT  4.1.1  Univariate Monitoring  4.1.2  Multivariate Monitoring 4.2  Rao-Blackwellization   4.3  RieInann Approximations 4.4  Acceleration Methods  4.4.1  Antithetic Variables   4.4.2  Control Variates 4.5  Problems 4.6  Notes   4.6.1  Monitoring Importance Sampling Convergence   4.6.2  Accept Reject with Loose Bounds   4.6.3  Partitioning5   Monte Carlo Optimization  5.1  Introduction  5.2  Stochastic Exploration   5.2.1  A Basic Solution   5.2.2  Gradient Methods   5.2.3.  Simulated Annealing   5.2.4  Prior Feedback 5.3  Stochastic Approximation   5.3.1  Missing Data Models and Demarginalization   5.3.2  The EM Algorithm   5.3.3  Monte Carlo EM   5.3.4  EM Standard Errors  ……6 Markov Chains7  The Metropolis-Hastings Algorithm8  The Slice Sampler9  The Two-Stage Gibbs Sampler10  The Multi-Stage Gibbs Sampler11  Variable Dimension Models and Reversible Jump Algorithms12  Diagnosing Convergence13  Perfect Sampling 14  Iterated and Sequential Importance Sampling A Probability DistributionsB NotationReferencesIndex

章節(jié)摘錄

插圖:

編輯推薦

《蒙特卡羅統(tǒng)計(jì)方法(第2版)(英文版)》由世界圖書出版公司出版。

圖書封面

圖書標(biāo)簽Tags

評論、評分、閱讀與下載


    蒙特卡羅統(tǒng)計(jì)方法 PDF格式下載


用戶評論 (總計(jì)23條)

 
 

  •   看到有的讀者評價(jià)這本書為“蒙特卡洛數(shù)學(xué)”,想說說自己的觀點(diǎn)。
    Monte Carlo本來就是一種很復(fù)雜的算法,要講解清楚本來就需要大量數(shù)學(xué)語言。
    正如書名所寫,這本書絕非純粹講解Monte Carlo,而是其在統(tǒng)計(jì)學(xué)中的應(yīng)用,以及由此而發(fā)展出來的一些統(tǒng)計(jì)方法。
    市面上Monte Carlo統(tǒng)計(jì)的教材非常少,要么偏重算法的角度,要么是從Bayesian ***pution的角度出發(fā)。而這本書內(nèi)容自洽,講解詳細(xì),絕對是學(xué)習(xí)Monte Carlo統(tǒng)計(jì)ods的絕佳教材。
  •   今天拿到了新書,隨手翻閱了若干內(nèi)容,感覺對于我這樣之前沒有接觸過蒙特卡羅的人來說,這本書正合適入門,內(nèi)容由淺及深,相當(dāng)經(jīng)典!
  •   全文都不英文,閱讀起來有點(diǎn)慢,不過外國人學(xué)的比較直接!里面大部分都不是統(tǒng)計(jì)論的公式,要有高等數(shù)學(xué)和數(shù)理統(tǒng)計(jì)的基礎(chǔ)!書不錯(cuò)
  •   完全看不懂啊親T T不過還是給個(gè)五分送當(dāng)當(dāng)?shù)陌l(fā)貨速度吧
  •   書非常好,內(nèi)容很全面、詳盡。
  •   這本書挺好!下次還來當(dāng)當(dāng)購書!
  •   全英文的,介紹的很詳細(xì)。
  •   書看著還行。。。沒仔細(xì)看呢。。。不過這次沒給俺開發(fā)票。。??爝f態(tài)度不怎么地。。。。望當(dāng)當(dāng)注意這些細(xì)節(jié)。。。。
  •   這本蒙卡的書比較數(shù)學(xué),側(cè)重從原理上來講解蒙卡到底是怎么一會兒事,有不少例子和算法。
    但,比較難,如果是沒接觸過蒙卡,上來就看這個(gè),估計(jì)會很吃力,如果是做過一段蒙卡,有一定的基礎(chǔ),針對自己的具體問題再回到書中來深入了解,倒是一本挺好的書。
    總之我覺得這本書確切的名字叫,蒙特卡洛的數(shù)學(xué)原理更貼切些吧。
  •   嗯,內(nèi)容不錯(cuò),雖然英文版讀起來費(fèi)勁點(diǎn)
  •   書還不錯(cuò),到貨很快
  •   書是好書,但有輕度磨損,不知道是哪個(gè)環(huán)節(jié)出了問題。希望下次注意。
  •   側(cè)重于數(shù)學(xué)基本理論的書。
    裝訂質(zhì)量一般。
  •   非統(tǒng)計(jì)專業(yè)路過,所以乍看起來還是有點(diǎn)費(fèi)力,但是內(nèi)容確實(shí)翔實(shí),springer出版的肯定不會差,可惜robert的blog現(xiàn)在看不了,希望對bayesian和mcmc有興趣的同學(xué)能夠拿起來看看,肯定會有所收獲的
  •   內(nèi)容詳細(xì)深入,是學(xué)習(xí)MC方法的好書
  •   剛拿到,看了看目錄,雖然是英文的讀起來可能有困難,但是真的不錯(cuò),內(nèi)容很全面
  •   不知道是不是包裝的事兒,書都破了,內(nèi)容嘛,有待研究,拿回來做研究用的!~~
  •   買的時(shí)候還猶豫了一下,買完看了一點(diǎn),真值!
  •   該書用一種讓人非常費(fèi)解的方式描述問題,并且語言也大多是抽象的。感覺是如果一個(gè)問題你以前知道,那么你知道他在講什么,如果你以前不知道,那么你看了他的書仍然不知道。不適合初學(xué)者。該書有一點(diǎn)好處是習(xí)題很多。
  •   感覺不錯(cuò),挺好的。英文,但是讀起來還是行。
  •   基本快要看完了,寫的很好,容易讀懂!
  •   效果看上去還不錯(cuò),比較滿意
  •   印刷質(zhì)量不行,內(nèi)容就不說了,可惜的是印刷的不夠清晰,令我對影印版有些失望
 

250萬本中文圖書簡介、評論、評分,PDF格式免費(fèi)下載。 第一圖書網(wǎng) 手機(jī)版

京ICP備13047387號-7